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Abstract— The emergence of vision-language-action (VLA)
models has given rise to foundation models for robot ma-
nipulation. Although these models have achieved significant
improvements, their generalization in multi-task manipulation
remains limited. This study proposes a VLA model-expert col-
laboration framework that leverages a limited number of expert
actions to enhance VLA model performance. This approach
reduces expert workload relative to manual operation while
simultaneously improving the reliability and generalization
of VLA models. Furthermore, manipulation data collected
during collaboration can further refine the VLA model, while
human participants concurrently enhance their skills. This bi-
directional learning loop boosts the overall performance of the
collaboration system. Experimental results across various VLA
models demonstrate the effectiveness of the proposed system
in collaborative manipulation and learning, as evidenced by
improved success rates across tasks. Additionally, validation
using a brain-computer interface (BCI) indicates that the
collaboration system enhances the efficiency of low-speed action
systems by involving VLA model during manipulation. These
promising results pave the way for advancing human-robot
interaction in the era of foundation models for robotics. (Project
website: https://aoqunjin.github.io/Expert-VLA/)

Index Terms— Human-Robot Collaboration; Human Factors
and Human-in-the-Loop; Learning from Demonstration

I. INTRODUCTION

Motivated by the successful application of large-scale
data to enhance generalization and robustness in computer
vision [1] and natural language processing [2], recent efforts
in robot learning have focused on leveraging extensive ma-
nipulation data to develop robotic foundation models [3]–
[6]. These studies design algorithms trained on diverse
tasks, environments, and robotic embodiments, aiming to
develop generalized policies across settings and platforms.
Beyond dataset scale, robotic foundation models incorporate
principles from vision and language models, using lan-
guage instructions—processed via pre-trained models such as
LLaMA 2 [7]—to guide manipulation, while vision models
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Fig. 1. The proposed VLA model-expert collaboration system integrates a
VLA model and expert interactions to enhance manipulation. The VLA
model generates actions by processing task instructions as text tokens
and environmental inputs as vision tokens. Meanwhile, the expert makes
decisions at a lower frequency, assisting the VLA model. Expert-executed
actions are collected to fine-tune the VLA model, improving system
performance.

like SigLIP ViT [8] condition action sequences on visual
inputs. These architectures, termed Vision-Language-Action
(VLA) models [9], integrate prior task knowledge from
vision and language, surpassing traditional robotic learning
approaches [10].

Although VLA models have advanced autonomous manip-
ulation abilities over traditional robotic learning algorithms,
challenges persist in developing universe policy across the
environment due to the scarcity of high-quality demonstra-
tions and the diversity of manipulation tasks. Compared to
computer vision and natural language processing, the scale
of robotic manipulation datasets remains relatively limited.
For example, the Open X-Embodiment dataset [3], the largest
open-source robotic manipulation dataset, contains approxi-
mately 2.5 million demonstrations—even significantly fewer
than pre-large-model era datasets in other domains, such as
ImageNet with over 10 million images and GPT-2, trained
on 8 million web pages [11], [12]. Furthermore, manip-
ulation tasks exhibit greater heterogeneity and abstraction
than vision and language processing. Unlike perception tasks,
manipulation skills are inherently difficult to transfer, even
for biological intelligence such as humans. In addition, a
single manipulation task can be executed through multiple
strategies, expanding the state space in policy learning.

To effectively deploy VLA models in target environments,
their manipulation capabilities need to be enhanced for
downstream tasks [3], [6], [13]–[16]. One approach is fine-
tuning VLA models with task-specific manipulation data,
a widely adopted strategy in large-model. Pre-trained VLA
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models across multiple embodiments and environments ex-
hibit positive transfer in downstream application, as evi-
denced by improved performance on target tasks [3], [13].
Another approach involves integrating expert decisions with
the policy model to semi-autonomous systems. By delegating
limited actions to experts and assigning the majority of
routine operations to the policy model, this collaboration
reduces the expert workload while mitigating the limitations
of the VLA models in complex cases. Although expert-
in-the-loop frameworks are common in semi-autonomous
robotics [17], [18], their integration with VLA models is
still an open problem.

To overcome these limitations, this study integrates expert-
in-the-loop and fine-tuning techniques to enable collabora-
tive manipulation and learning between experts and VLA
models. The VLA model is first fine-tuned with a small
amount of task-specific data, followed by collaboration with
experts to accomplish target tasks. During the collaboration,
human experts become more familiar with the system and
more skillful in manipulation. Manipulation data collected
during VLA model-expert collaboration is stored in a buffer
for subsequent fine-tuning, enabling continuous performance
improvement (See Fig. 1). The contributions of this study can
be summarized as follows:

• Semi-autonomous manipulation is achieved via collab-
oration between the VLA model and experts. To the
best of our knowledge, this work is a pioneer study in
investigating VLA model-expert collaboration.

• The collaborated process enables bi-directional learn-
ing: VLA models can be further fine-tuned using ma-
nipulation data, while experts adapt to the VLA model.

• Experimental results in the MetaWorld environment
confirm the effectiveness of collaboration. With an
action ratio of the VLA model to the expert set to 4 : 1,
the success rate of the VLA model in different tasks
improves by 6.2%/13.5% for MT10/MT50 benchmark,
and the number of action steps for human experts
decreases by 82.24%.

II. RELATED WORKS

A. VLA Models for Robot Learning

Building on the success of vision and language founda-
tion models, VLA models have emerged as a promising
approach for developing generalist robot policies [10], [19].
These models leverage visual and language representations
to provide high-level task instructions and contextual cues
for low-level actions.

Based on their input-output structures [19], VLA models
can be categorized into four types: One-Step input with
Discrete-Action output (OSDA) [4], [9], [20], Historical-
Step input with Discrete-Action output (HSDA) [21]–[23],
One-Step input with Continuous-Action output (OSCA) [14],
[24]–[26], and Historical-Step input with Continuous-Action
output (HSCA) [5], [6], [27].

The key distinction between one-step and historical-step
models is whether actions are predicted solely from the

current observation or incorporate historical context. While
robot action spaces are inherently continuous, the VLA
model’s action space can be either continuous or discretized,
depending on the design of the action head. A discrete
action head leverages the structure of the language decoder
to discretize the continuous action space, assigning specific
values to each token in the output layer, transforming action
prediction into a classification problem [4], [9], [22]. In
contrast, continuous actions can be generated using methods
such as a diffusion-based head [5], [28] or a flow-matching-
based head [14]. This study evaluates representative VLA
models from different categories within the proposed VLA
model-expert collaboration system [4], [5], [14].

B. Fine-tuning Techniques for Robot Manipulation Models
Fine-tuning plays a crucial role in adapting pre-trained

robot models to downstream applications [3]–[6], [13], [14].
The most straightforward approach involves fine-tuning the
models with a limited number of target manipulation trials,
which has shown effectiveness in several models [3]–[5],
[14]. Due to the challenges and time-consuming nature of
data collection, self-improvement techniques have emerged.
These techniques allow models to fine-tune using synthetic
data generated by the model itself [6], [13]. However, erro-
neous manipulations within the generated data can degrade
model performance. Another fine-tuning approach involves
reinforcement learning (RL), where high-level planning or
low-level control policies are optimized using designed re-
wards [15], [16], [29]. While effective, RL requires extensive
agent-environment interactions, making it a challenge to de-
ploy. This study proposes an alternative fine-tuning paradigm
where expert interactions with the model serve as an optimal
policy. By leveraging historical manipulation data during the
collaboration with experts, the VLA model can refine its
capabilities, improving performance through interaction.

III. METHOD

A. General Structure of VLA models
The VLA models take vision input and language instruc-

tions as conditioned states to predict actions, which can be
represented as V × L → A. Here, V represents the visual
input space, L represents the language instruction set, and
A represents the action space of the robot. The VLA model
establishes a mapping between vision-language input and the
action space.

As a multimodal model, the vision and language inputs are
first encoded through separate encoders, each designed for
its respective modality. The deep representations extracted
by these encoders are then fused, either through networks
like FiLM [30] or by directly concatenating. Since this study
does not focus on the design of the VLA model, here a
general form for the input-output relationship of VLA models
is provided:

ai = πVLA(li, vi) (1)

where ai is the action or action sequence generated by the
VLA model, li ∈ L is the language instruction, vi ∈ V is
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Fig. 2. Collaboration pipeline between VLA model and expert for manipulation and learning.

Algorithm 1 : Collaborated Learning
Require: VLA model’s policy: πVLA, expert’s policy πe,

fine-tuning steps: S, and collaboration epoch: T
1: Load pre-trained VLA model, initialize a data buffer

Dbuffer and a dataset D for fine-tuning VLA.
2: for x = 1 to T do
3: while Buffer Dbuffer is not full do
4: Carry out tasks based the collaborated manipulation

pipeline with πVLA and πe.
5: Collect actions generated based on πe and corre-

sponding vision/language states in to Dbuffer.
6: end while
7: Save Dbuffer into dataset D and clear Dbuffer.
8: for s = 1 to S do
9: Sample mini-batch from D.

10: Update πVLA with supervised learning paradigm.
11: end for
12: end for

the visual input, and πVLA is the policy of the VLA model.
The policy πVLA predicts the action at the i-th step based on
the vision observation vi and language instruction li. Note
that depending on the model’s structure, the vision input
may either include historical information or only the current
observation.

Given the continuous nature of the robot action space,
when the VLA model employs a discrete action head, the
predicted discrete action must be mapped back to the original
continuous space:

ai =
âi

vocab size − 1
(amax − amin) + amin (2)

where âi denotes the discrete action value corresponding to
the predicted token, vocab size is the vocabulary size, and
amax and amin represent the upper and lower bounds of
the action, respectively. This transformation maps discrete
actions back to the continuous action space.

B. Expert Policy

Two expert policies are considered in this study.
1) Rule-based Policy: The rule-based policy is imple-

mented within the MetaWorld simulation environment [31].

The policy is defined by the contributors, with the robot being
aware of both the task goal and the targets’ position. The
robot directly controls the arm to reach the desired position.
Given that the inverse dynamics of the robot are known, this
policy provides a near-optimal solution for accomplishing
the tasks.

2) Human Users Policy: The human users’ policy in-
volves participants controlling the robot arm during the task.
Although participants are encouraged to manipulate the arm
to reach the target, their varying proficiency, coupled with
potential mismatches between the 2D and 3D environments,
may affect performance. As a result, while the policy can
achieve the target, it may not be optimal.

C. Expert-VLA Collaboration

The collaboration between VLA models and experts con-
sists of two key processes: manipulation and learning. In the
manipulation step, the expert policy assists VLA models in
accomplishing various manipulation tasks. The learning step
utilizes data collected during manipulation to fine-tune the
VLA model, further enhancing its performance (See Fig. 2).

1) Collaborated Manipulation: Given that VLA models
can handle most manipulation tasks except under extreme
conditions, this study incorporates a limited number of expert
policy actions as a complement to the VLA model. The
collaborated manipulation process follows a straightforward
design: for a given task, the VLA model autonomously
executes actions for N steps, followed by one step from
the expert policy, repeating this cycle until the task is either
completed or reaches the failure threshold.

Since the majority of steps in a given manipulation task
can be successfully completed by the VLA model, the pro-
portion of actions generated by the VLA model can be higher
than those from the expert policy (e.g., four times more). This
collaborative approach enhances the performance compared
to a VLA model-only policy while reducing the burden on
user-driven manipulation.

2) Collaborated Learning: Through the interaction be-
tween the VLA model and the expert policy, new manip-
ulation data can be collected and used for further fine-tuning
of the VLA model. Despite failure cases occur during the
collaborated manipulation stage, due to the low proportion



TABLE I
STRUCTURE OF VLA MODELS IN THIS STUDY

Models Type V-model L-model Fusion

π0 [14] OSCA PaliGemma (Vision-language model) [32]
OpenVLA [4] OSDA DINOv2 [33] SigLiP [8] Concat

Octo [5] HSCA Light-CNN T5 [34] Concat

of expert-policy actions failing to accomplish tasks. The
expert policy in these cases can still be considered a near-
optimal action at the corresponding steps. Consequently,
this data is also used for fine-tuning the VLA model. The
detailed implementation of the collaborative learning process
is provided in Algorithm 1. It should be noted that the
collaborative learning process is bidirectional. If the expert
policy is provided by human participants, interaction with
the system can also enhance the participant’s proficiency in
manipulation.

IV. EXPERIMENTS AND RESULTS

The experiments are designed to validate the following
hypotheses:

• VLA models and experts benefit from the collaboration
by enhancing the performance of VLA models and
reducing the experts’ workload.

• VLA models and experts can adapt to manipula-
tion tasks through collaboration, enabling bi-directional
learning.

A. Implementation Details

1) VLA models: In this study, three representative state-
of-the-art models are selected to validate the proposed frame-
work [4], [5], [14]. These models differ in input (one-
step/historical steps) and output (continuous/discrete action),
representing different types and routes of VLA models
(Table I).

2) Experimental Environment: The proposed framework
is validated in the MetaWorld environment using the ML10
and ML50 benchmarks [31], which evaluate multi-task learn-
ing algorithms with 10 (ML10) or 50 (ML50) tasks. Since
VLA models are designed as foundation models for manip-
ulation tasks, they must handle a variety of tasks, not just a
single one. Therefore, this study is evaluated under the multi-
task paradigm. For each task, 50 trajectories are collected
using a rule-based policy for fine-tuning the VLA models,
with each trajectory limited to a maximum of 500 steps. Data
are captured using a fixed camera setup with an elevation
angle of -25° and an azimuth of 145°.

3) Training Details: A series of data augmentation tech-
niques are applied to the vision inputs during fine-tuning to
enhance model generalization. These augmentations include
random resized cropping (90% of the original size), random
brightness adjustment (±20%), random contrast adjustment
(within [0.8, 1.2]), random saturation adjustment (within
[0.8, 1.2]), and random hue adjustment (±0.05).

TABLE II
COMPARISON BETWEEN OCTO COLLABORATED WITH RULE-BASED

EXPERT POLICY AND HUMAN EXPERT POLICY IN MT10 (N = 4).

Tasks Successful rate Steps

V V-R V-H H V-H

window open 1.00 1.00 0.98 85.96 18.65
reach 0.34 0.32 0.86 68.98 12.07
peg insert 0.30 0.18 0.52 157.86 28.42
drawer close 1.00 1.00 1.00 42.94 16.42
drawer open 0.92 1.00 0.96 68.54 21.33
push 0.56 0.20 0.80 107.58 13.13
button press 0.30 1.00 0.92 120.10 13.70
window close 1.00 1.00 0.96 88.40 20.81
pick place 0.54 0.46 0.58 112.87 14.21
door open 0.96 1.00 1.00 148.00 19.08

Average 0.69 0.72 0.86 100.12 17.78

1 ‘V’: VLA model (Octo); ‘V-R’: Collaboration between VLA
model and rule-based expert policy; ‘V-H’: Collaboration be-
tween VLA model and human expert policy; ‘H’: Human
expert policy.

Fig. 3. Comparison of the baseline VLA model (Octo) and the VLA
model after collaborative learning (tuning). The success rates of the fine-
tuned VLA model—with and without the rule-based expert policy (V vs.
V-R)—are presented at the task level (a) and at the average level (b) in the
MT10 benchmark.

The action outputs of VLA models are normalized using
min-max normalization for the discrete action model and z-
score normalization for the continuous action model, follow-
ing prior work [5], [28]. The models are implemented based
on the official code provided by the authors [4], [5], [30].
Each model is fine-tuned with 800K sampled data from rule-
based trajectories, optimized using the optimizer specified in
the original paper or code.

4) Evaluation: During the evaluation stage, each task in
MT10 or MT50 is tested 50 times with randomly initialized
states. To ensure a fair comparison, all VLA models across
different settings are evaluated using the same set of random
seeds for the task initialization.



TABLE III
SUCCESS RATE OF COLLABORATION BETWEEN VLA MODELS AND RULE-BASED EXPERT POLICY UNDER DIFFERENT RATIOS

(VLA/EXPERT) IN MT10 AND MT50 BENCHMARKS.

Benchmark Model Baseline Expert-VLA Collaborated Manipulation

N = 32 N = 16 N = 8 N = 4 N = 2 N = 1

MT10

π0 [14] 0.754 0.746 0.758 0.788 0.846 0.892 0.948
OpenVLA [4] 0.854 0.862 0.892 0.904 0.924 0.954 0.988

Octo [5] 0.692 0.680 0.676 0.698 0.716 0.822 0.824

Improvement -0.004 +0.008 +0.030 +0.062 +0.122 +0.153

MT50

π0 [14] 0.566 0.568 0.601 0.651 0.728 0.808 0.918
OpenVLA [4] 0.844 0.870 0.890 0.916 0.938 0.946 0.965

Octo [5] 0.446 0.471 0.495 0.539 0.594 0.658 0.756

Improvement +0.018 +0.043 +0.083 +0.135 +0.185 +0.261
1 Baseline models are initialized with pre-trained weights and fine-tuning following the implementation details.
2 Improvement: average improvement from the baseline (Only VLA model manipulation).

Real value Fitted value Average

Fig. 4. Visualization of success rate and action steps executed by human
expert over round in hard tasks (successful rate lower than average) under
MT10.

B. Collaborated Manipulation

1) Successful Rate Improves for the VLA Models: For
VLA models [4], [5], [14], incorporating a small propor-
tion of expert policy—either rule-based or human user
policy—consistently improves success rates across different
models in both MT10 and MT50 benchmarks. As shown in
Table III, increasing the ratio of expert actions based on rules
enhances performance. This aligns with intuition, as expert
policies generally outperform VLA policies; thus, a higher
proportion of expert guidance leads to better outcomes.

It is noteworthy that although the success rate on the MT50
benchmark—which includes more manipulation tasks—is
lower, the relative improvement is more pronounced. As the
ratio of expert actions increases, the success rates across the
two benchmarks converge (Baseline: 0.767 vs. 0.619; N = 1:
0.920 vs. 0.880). This observation indicates that, even when
the VLA model may fail to complete a task under larger
manipulation sets, its actions are not entirely erroneous.

Furthermore, human user policies have been integrated
with Octo to evaluate human-VLA collaboration Table II.
Five participants interacted with Octo in real-time on the
MT10 benchmark (5 participants × 10 times/task, aligning

with rule-based expert experiments) under the setting of
N = 4 (four VLA model actions followed by one human
expert action). The results show a significant improvement
in task completion rate compared to the baseline model.
Notably, human collaboration yielded better performance
gains than rule-based policies, likely because the VLA model
is fine-tuned using rule-based data. Human inputs, being
more flexible and diverse, complement the original VLA
model policy.

2) Manipulation Steps Decrease by Human Users: The
benefits of collaboration for human users are evident in the
reduction of workload, as reflected in the number of action
steps executed by participants. This claim is validated by di-
rectly comparing action steps in a pure human-policy setting
with those in human-VLA collaboration. Five participants
performed tasks in the MT10 benchmark (5 participants ×
10 trials per task, following prior settings). The results are
summarized in Table II.

With a VLA-to-human action ratio of 4 : 1 (N = 4),
the VLA model is expected to take about 80% of the
actions, leading to an equivalent reduction in human effort.
The observed decrease (82.24%) closely aligns with this
expectation and slightly surpasses it. These findings suggest
the collaboration not only reduces the number of human-
executed actions but also enables the VLA model to some-
times take more optimal actions than human users.

C. Collaborated Learning

1) VLA Models Improving through Historical Manipu-
lation Data: To test whether historical manipulation data
can be used to fine-tune the VLA model, the Octo model
is re-tuned using collaborated manipulation data with rule-
based expert (N = 4). As shown in Fig. 3, the success rate
of the VLA model improves for most manipulation tasks
after re-tuning with collaboration data. The average success
rate across different tasks increases by 0.038 (from 0.692
to 0.730). This improvement indicates that the VLA model
benefits from learning during collaboration, likely due to the



 

Pure SSVEP-based BCI control T=96s/step=32

T=15s/step=77Collaboration with VLA model

Experimental setting

Fig. 5. Application of the collaboration framework in SSVEP-based BCI:
A comparison between pure SSVEP-based control and the collaboration
between the VLA model and the BCI user. Although in some cases the
policy of the human participant performs better than the VLA model (steps:
77 vs. 32), the collaboration system significantly improves time efficiency
for a given task (time: 15s vs. 96s).

expert policy guiding the model to complete tasks it could
not previously accomplish. This manipulation data provides
the VLA model with valuable examples of corner cases it
would not otherwise encounter, thus enhancing its overall
performance.

Another comparison evaluates the performance of collab-
orative manipulation before and after collaborative learning.
An improvement in the average success rate is observed
(0.136, from 0.716 to 0.852). Notably, after collaborative
learning, the improvement due to collaborative manipulation
is much higher (0.122 vs. 0.024). This may be because,
in cases where the VLA model fails when operating inde-
pendently, re-tuning brings it closer to success. It may also
imply that the enhancement in VLA performance is more
pronounced than what is reflected by the success rate.

2) Human Users Become More Skillful During the Col-
laboration: During collaboration, human users become more
familiar with the VLA system and may adjust their policy
to improve performance with the VLA model. This analysis
focuses on the challenge tasks in MT10 where the success
rate is lower than average (‘pick place’, ‘push’, ‘peg insert’,
‘reach’). As shown in Fig. 4, this adaptation is observed
across different users in the challenge tasks during the first
five rounds of interaction with the VLA model. The average
success rate shows a strong positive correlation with the
number of interaction rounds (Pearson correlation: 0.95).
Success rates improve from below average to above average.
Similarly, the number of action steps taken by human users
to complete tasks shows a negative linear correlation with

TABLE IV
PRELIMINARY RESULTS OF THE APPLICATION OF THE COLLABORATION

SYSTEM VLA MODEL IN SSVEP-BASED BCI (N = 16).

Tasks Participant 1 Participant 2

success rate steps success rate steps

window open 1.00 (5/5) 100.20 1.00 (5/5) 160.75
drawer close 1.00 (5/5) 66.40 1.00 (5/5) 79.80
button press 1.00 (5/5) 82.60 1.00 (5/5) 67.80
door open 1.00 (5/5) 83.60 1.00 (5/5) 83.80

rounds (Pearson correlation: -0.63). Initially, action steps are
higher than average but decrease over time. Since the VLA
model remains unchanged in these settings, this improvement
is attributed to learning by the participants.

V. DISCUSSION

The proposed expert-VLA collaboration system has been
empirically validated in the SSVEP-based BCI system. The
SSVEP-based BCI paradigm typically requires a sustained
period of visual stimulation to evoke a steady response in
the brain, as reflected by EEG signals for decoding. In this
context, the input action signal from the human participant
(expert) is slow, limiting the system’s responsiveness. How-
ever, by leveraging the VLA model for most actions, the
proposed collaboration system enhances the whole system’s
ability to respond at higher speeds. This improvement not
only increases efficiency but also significantly reduces the
user’s workload.

The EEG cap used in the experiment is the Emotiv
Flex, collecting signals at 128 Hz, with electrodes near the
occipital lobe selected for decoding. The decoding algorithm
employed is Canonical Correlation Analysis (CCA). As this
study is not focused on the BCI system itself, the experiment
primarily aims to validate the feasibility of the VLA model-
expert collaboration system.

Two participants are involved in this preliminary experi-
ment, performing four different tasks in the MT10 bench-
mark. The results are presented in Table IV, showing that
both participants can complete the tasks with the collab-
oration of the VLA model. Additionally, participants were
asked to complete the manipulation task using pure SSVEP-
based BCI control. Although the total number of steps may
be reduced in some tasks, a significant reduction in time
is achieved through collaboration with the VLA model, as
it performs most actions at a much faster speed compared
to the BCI system input (see the supplementary video and
Fig. 5).

VI. CONCLUSION

This study presents a collaboration framework between
VLA models and experts for bi-directional manipulation
learning. During manipulation, the proposed framework ben-
efits both VLA models and experts by improving VLA
performance while reducing the workload of human experts.



Beyond manipulation, the framework facilitates bidirectional
learning: the VLA model can be re-fine-tuned using ma-
nipulation data, while human experts improve their skills
through interaction. This work provides a novel perspective
on human-machine interaction, offering an effective ap-
proach to enhancing the efficiency of low-frequency human
action input systems. Furthermore, it enables continuous
improvement of VLA model performance through real-world
application. Future work will focus on fine-tuning VLA
models through online interaction and deploying the system
in real robotic environments.
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